数模竞赛-图论模型

NetworkX

基本操作:

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
import networkx

#创建空对象
G=networkx.Graph()
G=networkx.DiGraph()
G=networkx.MultiGraph()
G=networkx.MultiDiGraph()
#由邻接矩阵W创建图
G=networkx.Graph(W)
G=networkx.DiGraph(W)

networkx.draw(G,pos=None,ax=None,**kwds)
#G为要绘制的网格图 pos为表示位置坐标的字典数据,参数如下:
#circular_layout 顶点在圆环上均匀分布
#random_layout 顶点在一个单位正方形内随机分布
#shell_layout 顶点在多个同心圆上分布
#spring_layout 用Fruchterman-Reingold算法排列顶点
#spectral_layout 根据图的拉普拉斯特征向量排列顶点

示例:

1
2
3
4
5
6
7
8
9
10
11
12
import networkx,pylab

pylab.subplot(121)
G=networkx.cubical_graph()
networkx.draw(G,with_labels=True)

pylab.subplot(122)
s=['v'+str(i) for i in range(1,9)]
s=dict(zip(range(8),s))
networkx.draw(G,pos=networkx.circular_layout(G),labels=s,node_color='y',node_shape='s',edge_color='b')

pylab.show()

加边加点:

1
2
3
4
5
6
7
8
9
10
import networkx
G=networkx.Graph()
G.add_node(1)
G.add_nodes_from(['A','B'])
G.add_edge('A','B')
G.add_edge(1,2,weight=0.5)
e=[('A','B',0.3),('B','C',0.9),('A','C',0.5),('C','D',1.2)]
G.add_weighted_edges_from(e)
print(G.adj) #邻接表的字典数据
print(list(G.adjacency())) #邻接表的列表数据

画图:

1
2
3
4
5
6
7
8
9
10
import networkx,pylab
G=networkx.DiGraph()
List=[(1,2),(1,3),(2,3),(3,2),(3,5),(4,2),(4,6),(5,2),(5,4),(6,5)]
G.add_nodes_from(range(1,7))
G.add_edges_from(List)
pylab.rc('font',size=16)
networkx.draw(G,pos=networkx.shell_layout(G),with_labels=True,font_weight='bold',node_color='y')
W=networkx.to_numpy_matrix(G)
print(W) #导出邻接矩阵
pylab.show()

画赋权图:

1
2
3
4
5
6
7
8
9
10
11
12
13
import networkx,pylab,numpy
G=networkx.Graph()
List=[(1,3,10),(1,4,60),(2,3,5),(2,4,20),(3,4,1)]
G.add_nodes_from(range(1,5))
G.add_weighted_edges_from(List)
W1=networkx.to_numpy_matrix(G) #权重邻接矩阵
W2=networkx.get_edge_attributes(G,'weight') #赋权边字典数据
pos=networkx.spring_layout(G)
networkx.draw(G,pos,with_labels=True,font_weight='bold')
networkx.draw_networkx_edge_labels(G,pos,font_size=13,edge_labels=W2)
print(W1,G.adj,list(G.adjacency()),networkx.to_dict_of_lists(G)) #邻接矩阵、邻接表字典、邻接表列表、列表字典
numpy.savetxt('data.txt',W1,fmt='%d') #保存邻接矩阵
pylab.show()

最短路

Dijkstra

单源最短路,从$1$到$8$。

1
2
3
4
5
6
7
8
import networkx
G=networkx.DiGraph()
List=[(1,2,6),(1,3,3),(1,4,1),(2,5,1),(3,2,2),(3,4,2),(4,6,10),(5,4,6),(5,6,4),(5,7,3),(5,8,6),(6,5,10),(6,7,2),(7,8,4),(9,5,2),(9,8,3)]
G.add_nodes_from(range(1,10))
G.add_weighted_edges_from(List)
path=networkx.dijkstra_path(G,1,8,weight='weight')
d=networkx.dijkstra_path_length(G,1,8,weight='weight')
print(path,d) #最短路径、最小费用

Floyd-Warshall

全源最短路。

1
2
3
4
5
6
7
8
9
10
11
import networkx,numpy
G=networkx.Graph()
List=[(1,3,10),(1,4,60),(2,3,5),(2,4,20),(3,4,1)]
G.add_nodes_from(range(1,5))
G.add_weighted_edges_from(List)
d=networkx.floyd_warshall_numpy(G)
print(d) #最短距离矩阵
path=networkx.shortest_path(G,weight='weight',method='bellman-ford')
for i in range(1,len(d)):
for j in range(i+1,len(d)+1):
print(i,j,path[i][j]) #从点i到j的最短路径为...

路径输出:

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
import numpy,networkx,pylab
a=numpy.zeros((6,6))
a[0,1:]=[15,20,27,37,54]
a[1,2:]=[15,20,27,37]
a[2,3:]=[16,21,28]
a[3,4:]=[16,21]
a[4,5]=17
G=networkx.DiGraph(a)
p=networkx.shortest_path(G,0,5,weight='weight')
d=networkx.shortest_path_length(G,0,5,weight='weight')
print(p,d)
pylab.rc('font',size=16)
pos=networkx.shell_layout(G)
w=networkx.get_edge_attributes(G,'weight')
key=range(6)
s=['v'+str(i+1) for i in key]
s=dict(zip(key,s))
networkx.draw(G,pos,font_weight='bold',labels=s,node_color='r')
networkx.draw_networkx_edge_labels(G,pos,edge_labels=w)
path_edges=list(zip(p,p[1:]))
networkx.draw_networkx_edges(G,pos,edgelist=path_edges,edge_color='r',width=3)
pylab.show()

最小值地址:

1
2
3
4
5
6
7
8
9
10
import numpy,networkx
L=[(1,2,20),(1,5,15),(2,3,20),(2,4,60),(2,5,25),(3,4,30),(3,5,18),(5,6,15)]
G=networkx.Graph()
G.add_nodes_from(numpy.arange(1,7))
G.add_weighted_edges_from(L)
d=networkx.floyd_warshall_numpy(G)
md=numpy.max(d,axis=1) #逐行求最小值
mmd=min(md)
ind=numpy.argmin(md)+1 #找最小值地址
print(d,mmd,ind)

最短路问题的01整数规划

略。

最小生成树

代码:

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
import pylab,numpy,networkx
L=[(0,1,2),(0,2,1),(0,3,3),(0,4,4),(0,5,4),(0,6,2),(0,7,5),(0,8,4),(1,2,4),(1,8,1),(2,3,1),(3,4,1),(4,5,5),(5,6,2),(6,7,3),(7,8,5)]
G=networkx.Graph()
G.add_weighted_edges_from(L)
T=networkx.minimum_spanning_tree(G)
c=networkx.to_numpy_matrix(T)
print(c) #邻接矩阵
w=c.sum()/2
print(w) #最小生成树的权重
pos=networkx.circular_layout(G)

pylab.subplot(121)
networkx.draw(G,pos,with_labels=True,font_size=13)
w1=networkx.get_edge_attributes(G,'weight')
networkx.draw_networkx_edge_labels(G,pos,edge_labels=w1)

pylab.subplot(122)
networkx.draw(T,pos,with_labels=True,font_weight='bold')
w2=networkx.get_edge_attributes(T,'weight')
networkx.draw_networkx_edge_labels(T,pos,edge_labels=w2)
pylab.show()

着色问题

对图$G=(V,E)$的顶点进行着色所需最少颜色数目用$\chi(G)$表示,称为图$G$的色数。若$G=(V,E),\Delta=\max{d(v)\mid \in V}$为图$G$顶点的最大度数,则$\chi(G)\leqslant\Delta+1$。

设顶点个数为$n$,顶点最大度为$\Delta$,引入0-1变量$x_{ik}$当$v_i$着第$k$种颜色时为$1$,否则为$0$。设颜色总数为$y$,建立整数线性规划模型:

$$
\displaylines{
\min y,\\
\mathrm{s.t.}\begin{cases}
\displaystyle\sum_{k=1}^{\Delta+1}x_{ik}=1,i=1,2,\cdots,n,\\
x_{ik}+x_{jk}\leqslant1,(v_i,v_j)\in E,k=1,2,\cdots,\Delta+1,\\
\displaystyle y\geqslant\sum_{k=1}^{\Delta+1}kx_{ik},i=1,2,\cdots,n,\\
x_{ik}=0或1,i=1,2,\cdots,n,k=1,2,\cdots,\Delta+1
\end{cases}
}
$$

代码:

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
import cvxpy,numpy
L=[{'张','李','王'},{'李','赵','刘'},{'张','刘','王'},{'赵','刘','孙'},{'张','王','孙'},{'李','刘','王'}]
w=numpy.zeros((6,6))
for i in range(5):
for j in range(i+1,6):
if len(L[i]&L[j])>=1:
w[i,j]=1
ni,nj=numpy.nonzero(w)
w=w+w.T
deg=w.sum(axis=1)
K=int(max(deg))
n=len(w)
x=cvxpy.Variable((n,K+1),integer=True)
y=cvxpy.Variable()
obj=cvxpy.Minimize(y)
con=[cvxpy.sum(x,axis=1)==1,x>=0,x<=1]
for i in range(n):
con.append(y>=range(1,K+2)@x[i,:])
for k in range(K+1):
for i in range(len(ni)):
con.append(x[ni[i],k]+x[nj[i],k]<=1)
prob=cvxpy.Problem(obj,con)
prob.solve(solver='GLPK_MI')
i,k=numpy.nonzero(x.value)
print(prob.value,x.value,i+1,k+1) #最优值 最优解 顶点和颜色对应关系

网络流

最大流

给定一个有向图$D=(V,A)$,$A$为弧集,$V$指定一点称为发点或源$v_s$,该点只有发出的弧。指定一点称为收点或汇$v_t$,该点只有进入的弧,其余点称为中间点。对于每一条弧$(v_i,v_j)\in A$对应有一个$c(v_i,v_j)\geqslant0$称为弧的容量。把这样有向图$D$称为一个网络记作$D=(V,A,C)$,其中$C={c_{ij}}$。网络上的流指定义在弧集合$A$上的一个函数$f={f_{ij}}={f(v_i,v_j)}$,称$f_{ij}$为弧$(v_i,v_j)$上的流量。

满足下列条件的流$f$称为可行流:满足容量限制条件$\forall(v_i,v_j)\in A,0\leqslant f_{ij}\leqslant c_{ij}$。满足平衡条件有$\displaystyle\sum_{j:(v_i,v_j)\in A}f_{ij}-\sum_{k:(v_k,v_i)\in A}f_{ki}=0,\sum_{j:(v_s,v_j)\in A}f_{sj}=v,\sum_{k:(v_k,v_t)\in A}f_{kt}=v$,其中$v$为这个可行流的流量,即发点的净输出量。可行流总是存在的,如零流。

(下面这段Markdown崩了凑合着看吧。

若给定一个可行流$f={f_{ij}}$,把网络中使$f_{ij}=c_{ij}$的弧称为饱和弧,使$f_{ij}<f_{ij}$的弧称为非饱和弧。$f_{ij}=0$的弧称为零流弧,$f_{ij}>0$的弧称为非零流弧。若$\mu$是网络中联结发点$v_s$和收点$v_t$的一条路,定义路的方向是从$v_s$到$v_t$,则路上的弧被分为两类:一类是弧的方向与路的方向一致称为前向弧,前向弧全体记为$\mu^+$。另一类弧与路的方向相反称为后向弧,后向弧全体记为$\mu^-$。

最大流问题写作线性规划模型为:

$$
\displaylines{
\max v,\\
\mathrm{s.t.}\begin{cases}
\displaystyle\sum_{j:\left(v_s,v_j\right)\in A}f_{sj}=v,\\
\displaystyle\sum_{j:\left(v_i,v_j\right)\in A}f_{ij}-\sum_{k:\left(v_k,v_i\right)\in A}f_{ki}=0,i\neq s,t,\\
\displaystyle\sum_{k:\left(v_k,v_t\right)\in A}f_{kt}=v,\\
0\leqslant f_{ij}\leqslant c_{ij},\forall\left(v_i,v_j\right)\in A
\end{cases}
}
$$

设$f$是一个可行流,$\mu$时从$v_s$到$v_t$的一条路,若$\mu$满足前向弧是非饱和弧,后向弧时非零流弧,则$\mu$称为关于可行流$f$的一条增广路。

Ford-Fulkerson求最大流标号法略。

代码:

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
import numpy,networkx,pylab
L=[(1,2,6),(1,3,4),(1,4,5),(2,3,3),(2,5,9),(2,6,9),(3,4,5),(3,5,6),(3,6,7),(3,7,3),(4,3,2),(4,7,5),(5,8,12),(6,5,8),(6,8,10),(7,6,4),(7,8,15)]
G=networkx.DiGraph()
G.add_nodes_from(range(1,9))
G.add_weighted_edges_from(L,weight='capacity')
value,flow_dict=networkx.maximum_flow(G,1,8)
print(value,flow_dict) #最大流流量 最大流
n=len(flow_dict)
adj_mat=numpy.zeros((n,n),dtype=int)
for i,adj in flow_dict.items():
for j,weight in adj.items():
adj_mat[i-1,j-1]=weight
print(adj_mat) #最大流邻接矩阵
ni,nj=numpy.nonzero(adj_mat)
pylab.rc('font',size=16)
pos=networkx.shell_layout(G)
w=networkx.get_edge_attributes(G,'capacity')
networkx.draw(G,pos,font_weight='bold',with_labels=True,node_color='y')
networkx.draw_networkx_edge_labels(G,pos,edge_labels=w)
path_edges=list(zip(ni+1,nj+1))
networkx.draw_networkx_edges(G,pos,edgelist=path_edges,edge_color='r',width=3)
pylab.show()

例题:人才招聘

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
import numpy,networkx
node=['s','A','B','C','D','E','2b','3b','4b','1','2','3','4','t']
n=len(node)
G=networkx.DiGraph()
G.add_nodes_from(node)
L=[('s','A',4),('s','B',3),('s','C',3),('s','D',2),('s','E',4),('A','2b',1),('A','1',1),('A','3b',1),('A','4b',1),('B','2b',1),('B','1',1),('B','3',1),('B','4b',1),('C','1',1),('C','2',1),('C','3',1),('C','4b',1),('D','1',1),('D','2',1),('D','3b',1),('D','4b',1),('E','2b',1),('E','1',1),('E','3',1),('E','4',1),('2b','2',2),('3b','3',1),('4b','4',2),('1','t',5),('2','t',4),('3','t',4),('4','t',3)]
for k in range(len(L)):
G.add_edge(L[k][0],L[k][1],capacity=L[k][2])
value,flow_dict=networkx.maximum_flow(G,'s','t')
print(value,flow_dict)
A=numpy.zeros((n,n),dtype=int)
for i,adj in flow_dict.items():
for j,f in adj.items():
A[node.index(i),node.index(j)]=f
print(A)

最小费用流

设$b_{ij}$为弧$\left(v_i,v_j\right)$上的单位费用,最小费用流问题可写作线性规划问题:

$$
\displaylines{
\min\sum_{\left(v_i,v_j\right)\in A}b_{ij}f_{ij},\\
\mathrm{s.t.}\begin{cases}
\displaystyle\sum_{j:\left(v_s,v_j\right)\in A}f_{sj}=v,\\
\displaystyle\sum_{j:\left(v_i,v_j\right)\in A}f_{ij}-\sum_{k:\left(v_k,v_i\right)\in A}f_{ki}=0,i\neq s,t,\\
\displaystyle\sum_{k:\left(v_k,v_t\right)\in A}f_{kt}=v,\\
0\leqslant f_{ij}\leqslant c_{ij},\forall\left(v_i,v_j\right)\in A
\end{cases}
}
$$

代码:

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
import numpy,networkx
L=[('vs','v2',5,3),('vs','v3',3,6),('v2','v4',2,8),('v3','v2',1,2),('v3','v5',4,2),('v4','v3',1,1),('v4','v5',3,4),('v4','vt',2,10),('v5','vt',5,2)]
G=networkx.DiGraph()
for k in range(len(L)):
G.add_edge(L[k][0],L[k][1],capacity=L[k][2],weight=L[k][3])
maxFlow=networkx.max_flow_min_cost(G,'vs','vt')
mincost=networkx.cost_of_flow(G,maxFlow)
print(maxFlow,mincost) #最大流 最小费用
node=list(G.nodes())
n=len(node)
flow_mat=numpy.zeros((n,n))
for i,adj in maxFlow.items():
for j,f in adj.items():
flow_mat[node.index(i),node.index(j)]=f
print(sum(flow_mat[:,-1]),flow_mat) #最大流量 邻接矩阵

关键路径

设$t(i,j)$为作业$(i,j)$所需工时,$t_E(i)$为与事件$j$相邻的各紧前事件的最早时间,$t_E(n)$也为总最早完工期,有:

$$
\displaylines{
\begin{cases}
t_E(1)=0,\\
\displaystyle t_E(j)=\max_j\left\{t_E(i)+t(i,j)\right\}
\end{cases}
}
$$

设$t_L(i)$表示以事件$i$为始点的作业最迟必须开始时间,或以事件$i$为终点的各作业最迟必须完成时间,需要从后往前递推,有:

$$
\displaylines{
\begin{cases}
t_L(n)=t_E(n),\\
\displaystyle t_L(i)=\min_j\left\{t_L(j)-t(i,j)\right\}
\end{cases}
}
$$